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ABSTRACT 
 
 

REAL-TIME MOTION TRANSITION BY EXAMPLE 
 
 
 

Cameron Egbert 
 

Department of Computer Science 
 

Master of Science 
 
 
 

Motion transitioning is a common task in real-time applications such as games.  

While most character motions can be created a priori using motion capture or hand 

animation, transitions between these motions must be created by an animation system at 

runtime.  Because of this requirement, it is often difficult to create a transition that 

preserves the feel that the actor or animator has put into the motion.  An additional 

difficulty is that transitions must be created in real-time.  This paper provides a method of 

creating motion transitions that is both computationally feasible for interactive speeds, 

and preserves the feel of the original motions.  To do this, we build the transition from 

both a procedural motion and a motion segment taken from the motions being 

transitioned between. 
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Chapter 1 

Introduction 

1.1 Background 
 

 Realistic character motion is a necessity for computer graphics applications such 

as movies and games.  Three main methods exist to create motion for a virtual character- 

motion capture, hand animation, and simulation.  Motion capture is the process of 

recording the motion of a live human actor.  Hand animation refers to the use of a 

software package to manipulate a 3D model of a character over time in order to achieve 

an animation.  In simulation, the motion of the character is computed using a physical 

model. 

Simulation methods are generally thought to be too unrealistic for games.  In 

addition, since an interactive application, such as a game, must generate animation on the 

fly, and both motion capture and hand animation produce pre-made motion, these 

methods can only be used if further processing is done. 

The method most commonly used in games is to create several base motion 

segments (i.e., walking, running, jumping, etc.) using motion capture or hand animation, 

and transition between these motions on the fly [Mizuguchi et al. 2001; Gleicher et al. 

2002]. 

 Most current animation systems use skeletal animation.  Each model has both a 

skin and a skeleton.  The skin is made up of a polygonal mesh, and this mesh is what is 

seen in the final rendering.  The skeleton is made up of a hierarchy of bones, which 
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define the position of the skin.  Moving the skeleton, therefore, moves the skin of the 

model; much like a human skeleton moves a human body.  Usually, a large number of 

skin vertices will map to very few skeleton bones.  This makes it so that only the 

relatively few skeleton bones must be manipulated in order to move the model, instead of 

moving each vertex of the model’s skin.   

A motion is a series of transformations for each of the bones of the skeleton.  

Each bone transformation is expressed in terms of Euler rotations of each of the three 

axes, X, Y, and Z.  These three orientations can also be expressed in terms of a single 

quaternion, which removes the ambiguities of the Euler rotation representation.  In 

addition, each bone has a constant length.  A motion for a particular skeleton, then, is 

defined as a continuous function:  

 

M(f) = (pR(f), q1(f)…qn(f)) 

 

where pR(f) is the position of the root, and qi(f) is the orientation of the ith bone.  Each 

parameter vector M(f) is called a frame, and f is called the frame index.  A transition is a 

motion that links two other motions together. 

 

1.2 Statement of the Problem 

 
The goal of this research has been to find a method to create plausible transitions 

for interactive applications.  Since the point of transition is not known ahead of time, 
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these transitions must be created dynamically.  This puts more severe constraints on the 

transitioning method than would be needed for an offline method.  

Ideally, the method of creating the transition should have the following properties, 

in order of decreasing necessity: 

1. Computing the transition should be efficient enough to run in real time. 

2. Transitioning should be responsive. 

3. The transitioning method should not require excessive space resources (disk 

space, memory, etc.). 

4. The motion created should be continuous and believable.  

 

These are the basic criteria for any algorithm that creates a transition.  The first 

three are hard constraints for real-time applications.  If the algorithm doesn’t meet these 

requirements, it is of no use.  The fourth is a softer constraint and is somewhat subjective.  

At the very least, the algorithm should produce a motion for which C1 continuity is 

preserved for the position and rotation of the joints.   

We have produced a method that is feasible for real-time applications and 

improves on the motion quality available from existing transitioning methods.  While 

current methods either sacrifice interactivity or motion quality, our method preserves 

both.  We do this by using a Laplacian pyramid decomposition to warp animation 

information from the two motions being transitioned between in order to create the 

transition.  This preserves the same “feel” of the original motions in creating the 

transition, while being computationally efficient enough for interactive rates. 
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1.3 Thesis Statement 

 Believable motion transitions can be created by modifying pre-stored motion 

using a Laplacian pyramid decomposition.  In addition, these transitions can be computed 

at interactive rates, are responsive to user input, and don’t require extraordinary space 

resources, making the algorithm feasible for real-time applications. 
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Chapter 2 

Motion Transitioning Methods 

2.1 Current Methods 

A brief overview of a few methods currently in use for creating transitions will 

now be given.  For a more in depth review of these methods, refer to Chapter 3.   

Currently, the most widely used method of creating transitions involves linearly 

interpolating between two motions.  A pre-determined number of frames at the end of the 

first motion are overlapped with the first frames of the second motion, and the values of 

each are linearly interpolated, creating a smooth transition between the motions.  

Unfortunately, this transition may not be realistic, especially in the case of extremely 

dissimilar motions.  Even when the motions are similar, the problem of synchronizing 

motions is not addressed using this method alone.  Transitioning between two walking 

motions that are at different points in their cycle will give an unrealistic transition, even 

though the motions are similar. 

This problem is addressed by using dynamic timewarping [Bruderlin and 

Williams 1995; Kovar and Gleicher 2003].  Dynamic timewarping creates a function that 

synchronizes both motions to be at similar poses at any given time by first determining 

the similarity of each pair of frames for both motions.  A distance function is used to 

determine this similarity.  Then the synchronization function is determined by finding the 

best path through these similarity values.  The computation of this function can be done 

as an offline step by creating a lookup table.  This table is then referenced at runtime to 
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synchronize the two motions.  While timewarping alleviates the problem of 

unsynchronized motions, it doesn’t address the problem of two dissimilar motions. 

Other methods for creating transitions have been proposed.  Rose et al. [1996], 

use spacetime constraints to create transitions.  In their method, a combination of 

dynamic and kinematic constraints is placed on the skeleton, and a transition is generated 

using these constraints.  This method gives realistic motion for short transitions (between 

about 0.3 and 0.6 seconds) but is not computationally efficient enough for real-time 

applications. 

Kovar, et al. [2002] use a method they call a Motion Graph which is a way of 

arranging motion data into a graph.  Traversing this graph gives a new motion.  Each 

node of the graph corresponds to a common pose, such as standing.  Traversing an edge 

corresponds to playing a short motion segment between two poses.  In order to determine 

an entire motion, a traversal through the graph between two particular nodes is computed 

using a set of constraints, after which the motion is played by traversing the graph node 

by node.  Motion graphs are not suitable for interactive applications because of the 

computation time needed to find a traversal of the graph.   

An extension to Motion Graphs, called Snap-together motion [Gleicher et al. 

2003], processes a corpus of motion into a graph similar to a motion graph.  Snap-

together motion differs from Motion Graphs primarily in the way that it produces motion.  

Instead of computing an entire traversal through the graph, each edge traversal is 

determined one by one at run-time from the user’s input.  In this way, the graph can be 

used for real-time applications.  The downfall of this method is that once an edge is 
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taken, no further input can be given until the motion reaches the next node.  While this is 

sufficient for some real-time applications, in general, more interactivity is required. 

 

2.2 Approach Presented in this Thesis 

 
 This thesis proposes a method that will be feasible for real-time applications, and 

give more believable motion than a simple linear transition.  Specifically, the motion for 

the transition is adapted from a segment of motion from one of the two motions being 

transitioned between.  This segment can be chosen to resemble any specific motion.  This 

ability is leveraged to choose a segment that resembles the desired transition.  The 

segment chosen is then warped to match this transition even more closely.  In this way 

the method enables the synthesis of a transition that preserves the same “feel” of the 

original motion while producing a motion that is feasible as a continuous transition.  

The remainder of the thesis will be presented as follows:  Chapter 3 is a paper 

describing the research done that will be submitted for publication, and Chapter 4 

contains a summary and conclusions. 
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Chapter 3 

Real-Time Motion Transition by Example 

3.1 Abstract 
 

Motion transitioning is a common task in real-time applications such as games.  

While most character motions can be created a priori using motion capture or hand 

animation, transitions between these motions must be created by an animation system at 

runtime.  Because of this requirement, it is often difficult to create a transition that 

preserves the feel that the actor or animator has put into the motion.  An additional 

difficulty is that transitions must be created in real-time.  This paper provides a method of 

creating motion transitions that is computationally feasible for interactive speeds and that 

preserves the feel of the original motions.  To do this, we build the transition from both a 

procedural motion and a motion segment taken from the motions being transitioned 

between. 

3.2 Introduction 
 

Realistic character motion is becoming a necessity for real-time applications such 

as games.  As real-time rendering technology is advancing to the point of photo-realism, 

more and more attention is being placed on realistic motion techniques, especially in the 

case of virtual characters.   
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One basic motion technique required in real-time applications is transitioning.  

Typically, a set of base motions (i.e., walking, running, jumping, etc.) is created by an 

animator or by motion capture, and then transitions are created to link these motions 

together.  Because it is not known beforehand when the character will need to transition, 

and because it is not feasible to create every possible transition ahead of time, transitions 

are usually created at run-time [Mizuguchi et al. 2001; Menache, 2000].      

We propose the following criteria to measure the effectiveness of methods used 

for creating realistic motion transitions, in order of decreasing necessity: 

 

1. Computing the transition should be efficient enough to run in real time. 

2. Transitioning should be responsive. 

3. The transitioning method should not require excessive space resources 

(disk space, memory, etc.). 

4. The motion it creates should be continuous and believable.  

 

First, and most importantly, the transitioning algorithm must be efficient enough 

to be computed in real time.  This is a hard constraint.  If the algorithm doesn’t run in real 

time, it is of no use to an interactive application.  This constraint is somewhat of a 

moving target, as compute power is constantly increasing.  However, an algorithm that 

runs in exponential time will likely not achieve real-time performance regardless of the 

available compute power. 

Second, transitioning should be responsive.  Transitioning should start as an 

immediate response to some user input.  In other words, latency should be minimal.  If 
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the user presses a jump button, the virtual character should jump immediately, not after a 

delay.  For a few applications this is not as necessary, but in general this is a requirement 

of real time applications. 

Third, the transitioning method should not require extraordinary space resources.  

For example, an algorithm that pre-computes every possible transition and stores it on 

disk to be looked up when needed, while computationally efficient at run-time, would 

constitute an algorithm that requires excessive resources.  Current real-time environments 

have space and resource limitations, some of which are quite restrictive.  Thus, the 

technique should be such that it can meet these restrictions without sacrificing the other 

system goals.  This constraint is also a moving target, as resource constraints become less 

severe with each new generation of hardware. 

Fourth, the motion it creates should be believable.  For example, in a transition 

from a walking animation to a running animation, when a foot touches the ground, it 

shouldn’t move.  The transition should also look natural, like something the character 

would do.  At the very least, the motion should be continuous from the end of the first 

motion to the beginning of the second motion.  In particular, at least C1 continuity should 

be preserved for the joint orientations.  Believability is the softest constraint, since 

believability is a subjective term, and perfectly believable motion is still an unsolved 

problem.  However, reasonable believability is necessary. 

Motion for a particular skeleton is defined as a continuous function: 

 

M(f) = (pR(f), q1(f)…qn(f)) 
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where pR(f) is the position of the root, and qi(f) is the orientation of the ith joint.  Each 

parameter vector M(f) is called a frame, and f is called the frame index.  A transition is a 

motion that links two other motions together in a continuous fashion. 

 

3.3 Related Work 
 

One of the most widely used methods of creating real-time transitions involves 

linearly interpolating between two motions [Menache, 2000; Mizuguchi et al. 2001].  A 

pre-determined number of frames at the end of the first motion are overlapped with the 

first frames of the second motion, and the values of each are linearly interpolated, with 

interpolation values decreasing from 1.0 to 0.0 for the first motion, and increasing from 

0.0 to 1.0 for the second motion.  This creates a smooth transition such that the first frame 

of the transition is a frame from the first motion and the last frame is a frame from the 

second motion.  Formally, if M0 is the first motion, which has m frames, M1 is the second 

motion, which has n frames, and T is the desired transition, which has u frames, then  

 

T(x) = M0(m - u + x) * (1 - x/u) + M1(x) * (x/u) 

 

As an example, for a 10 frame transition between motions M0, and M1, the first 

frame of the transition would be 1*M0(n-10) + 0*M1(0), the next frame would be 

0.9*M0(n-9) + 0.1*M1(1), and the last frame would be 0*M0(n) + 1*M1(10).  In practice, 

this interpolation is usually done as a spherical linear interpolation on the orientation 

quaternions, as opposed to simply interpolating each degree of freedom. 
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This method is efficient, responsive, and requires no space other than that 

required for the original motions.  The downfall of this method is that it doesn’t always 

produce realistic motion.  The motion is synthesized from two motions that may or may 

not be similar (a walk to a jump).  Even if they are similar, they may not be synchronized.  

For example, a walk with left foot forward to a run with left foot forward will cause the 

transition to look like a half step from left foot forward to both feet at neutral, then back 

to left foot forward, instead of left foot forward, neutral, then right foot forward. 

One proposed method of synchronizing the motions is to use dynamic 

timewarping [Bruderlin and Williams 1995; Kovar and Gleicher 2003].  Dynamic 

timewarping creates a function that synchronizes both motions to be at similar poses at 

any given time.  This is usually done by computing a distance function between each pair 

of frames for both motions, which gives a 2-dimensional distance array, and then 

searching for a path through this array that follows the valleys.  While it is not trivial to 

compute the distance metric between each frame of both motions for the distance array, 

this can usually be done as an offline step.  The timewarp can then be computed from this 

at runtime with minimal overhead using a dynamic programming solution.  This method 

does introduce significant storage consumption, as a distance array has to be stored for 

each pair of motions.  Thus, the array will require O(n2) storage.  Timewarping also 

doesn’t address the problem of two dissimilar motions. 

Park et al. [2002] use the idea of dynamic timewarping to align clips of motion 

before interpolating between them.  In addition, the motion clips are parameterized to 

provide a method for controlling the synthesized motion.  If these interpolations are 

parameterized correctly, a large amount of control can be had over the animation.  Their 
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approach allows for specification of locomotion over a range of directions and speeds.  

Unfortunately, this method is geared toward generating motion from a set of similar 

motions, and not between two arbitrary (possibly different) motions. 

Other methods for creating transitions have been proposed.  Rose et al. [1996] 

propose a method of generating transitions using spacetime constraints.  In their method, 

a combination of dynamic and kinematic constraints is placed on the skeleton, and a 

transition is generated using these constraints.  This method gives realistic motion for 

short transitions (between about 0.3 and 0.6 seconds) but is not computationally efficient 

enough for real-time applications. 

Physically-based motion synthesis is another method of synthesizing motion 

[Hodgins et al. 1995; Liu et al. 2002].  In these methods, Motion is generated from a 

dynamic simulation of the character.  It is prohibitively difficult to produce realistic 

motion using physically-based approaches except for a few special cases.  Additionally, 

the level of realism is often proportional to processing complexity, further hindering the 

achievement of realism.  As processing complexity is lowered to the critical point of real-

time performance, motion quality degrades.  These approaches also fail to capture the 

nuances of human motion.  The motion is physically valid, which is a good first step, 

since human motion is also physically valid, but the motion produced lacks the feel of a 

living character.  Humans are noisy creatures, whose motion is never exactly repeatable, 

while simulations give “perfect” motion that can be recreated exactly. 

Another approach is to construct a mathematical model from a set of motion 

capture data.  Hidden markov models [Brand et al. 2000] and switched linear dynamic 

systems [Li et al. 2002] are among the most popular approaches.  These methods can 
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produce arbitrary motion that resembles the pre-existing cache of motion capture data, 

but at the cost of low control and high processing requirements.   

Another approach, Motion Graphs [Kovar et al. 2002], converts a corpus of 

motion data into a graph representation, which gives new motion when traversed.  Nodes 

in the graph correspond to frames that are similar in two or more motions (local minima 

of the distance array), and edges correspond to motion segments in-between these frames.  

A motion is created by calculating a traversal through the graph given a set of constraints.  

Motion graphs are not suitable for interactive applications because of the computation 

time needed to find a traversal of the graph.   

An extension to Motion Graphs, Snap-together motion [Gleicher et al. 2003] 

processes a corpus of motion into a graph similar to a motion graph.  The main difference 

between Motion Graphs and Snap-together motion is the process of creating motion.  

Instead of calculating an entire traversal through the graph, each edge traversal is 

determined one at a time at run-time from the user’s input.  For example, a simple Snap-

together motion graph might consist of three nodes: one corresponding to a standing 

pose, another corresponding to a crouching pose, and the last corresponding to a kneeling 

pose.  The graph also has three edges, one between each pair of nodes.  Suppose the 

character starts in the standing pose.  If no input is given, the character will keep 

standing.  If the user tells the character to crouch, the edge from the standing pose node to 

the crouching pose node will be taken, and the corresponding motion played.  From this 

pose, the character can then go back to crouching, or to kneeling.  A walking motion 

would be an edge from the standing node that loops back to the standing node after two 

steps.  Snap-together motion is a step in the direction of interactivity, since the transitions 



www.manaraa.com

16 

between nodes are taken as the user gives input, instead of computing the entire path 

through the motion graph.  However, this approach doesn’t quite achieve full 

responsiveness.  Once an edge is taken, i.e., a motion segment has started, the motion of 

the character can’t be interrupted until reaching a node.  This is sufficient for some 

applications but in general does not produce enough responsiveness. 

In another graph-based approach, Arikan and Forsyth [2002] applied a 

randomized algorithm to search for motions from a hierarchy of transition graphs.  In 

later work, Arikan et al. [2003] created a motion by using a similar graph structure but 

satisfied user-specified annotations in the creation of the resulting motion.  When the 

number of example motions becomes too large, it becomes prohibitively time-consuming 

to search through these graph structures for a suitable motion. 

Pullen and Bregler [2002] propose a method of using motion capture to assist an 

artist in creating an animation.  In their method, the artist creates a rough animation using 

conventional key-framing, and motion capture data is used to enhance the animation in 

order to make it look more lifelike.  Part of our method leverages this research in making 

the final transition more natural.  

 

3.4 Real-Time Motion Transition by Example 
 

In order to produce a method of creating transitions that meet the four proposed goals, 

we propose a new method that is both feasible for real-time applications and produces 

more believable motion than a simple linear transition.  The “feel” of the motion is 
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preserved by adapting pre-existing motion from the two motions being transitioned 

between. 

This approach at producing real-time motion transitions is encapsulated in a 4-step 

process: 

 

1. Find transition points. 

2. Align motions. 

3. Search for an example. 

4. Motion modification. 

 

In the following discussion, M0 is the motion that is being transitioned from, M1 

is the motion that is being transitioned to, T is the transition, and t is the length of the 

transition (in frames).     

 

3.4.1 Finding Transition Points 
 

First, since the start of the transition is a frame from M0, and the end of the 

transition is a frame from M1, transition points are found for M0 and M1.  The transition 

point for M0 is the frame at which the transition is initiated.  For example, if the character 

is on frame 10 of a walking animation when the user initiates the transition, the transition 

point for M0 is frame 10.  The transition point of M1 is either set manually, or found 

using a method similar to dynamic timewarping.  Motions that should be played from 

start to finish (jumping, kicking, punching, etc.) have their “transition to” frame set 
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manually to the first frame, while the transition point for two similar motions (walking to 

running) is computed using dynamic timewarping.  These transition points are kept in a 

lookup table for use at runtime. 

Keeping a lookup table of the matching frames requires storage space to hold the 

frame of each motion that could be transitioned to, for each frame in each motion.  

Therefore, if there are n motions, and each motion has m frames, the space required to 

store these values is n*m*n.  Typically a character will have up to 50 motions, at about 

200 frames per motion.  Since each value of a table is a frame index, these values can be 

stored in 1 byte, which requires 500,000 bytes (479 kB) to store all of the tables, which is 

not an excessive space requirement.  At run-time, the necessary value is simply read from 

this lookup table.  Since we want the transition to look natural, we find the transition 

point in M1 which matches what the frame from M0 would have been had there been no 

transition.  For example, if a 30 frame transition is initiated on a walk cycle when the left 

foot is forward, and at the end of 30 frames, the character would have had its right foot 

forward, we want to transition to a frame in M1 that is similar to the right foot forward 

pose.  Specifically, given frame i in M0, to find the correct “transition to” frame j in M1 

(after a transition of length t), just read the lookup table value for M0(i+t), instead of 

simply M0(i). 

 

3.4.1.1 Dynamic Timewarping 
 

To determine a timewarp, we use the same distance metric as in [Kovar et al. 

2002].  Specifically, to compute the distance between two frames Fi and Fj, two point 
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clouds representing each frame are compared.  The point clouds are created from the joint 

positions of the skeleton.  In order to take into account derivative information, a small 

neighborhood of frames about Fi and Fj are used to create the point clouds.  Finally, the 

optimal sum of squared distances is computed between the two point clouds, allowing for 

rigid 2D transformations.  The distance metric is defined as: 
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where pi,k is the kth point in the cloud generated from frame i and Tθ,x0,z0 is a linear 

transformation consisting of a rotation of θ degrees about the vertical axis followed by a 

translation of (x0, z0).  wk are weights that sum to one and give more importance to Fi and 

Fj, and less importance to the frames at the edges of the neighborhoods.   

This has the following closed form solution: 
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where ∑= i ii xwx and the other barred terms are similar. 

This distance metric is calculated for each pair of frames, which produces a 

distance array.  Figure 1 shows an example distance array for the weak kick and strong 

kick actions. 
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Matching frames are calculated from this array.  The idea is to create a minimum 

cost connecting path through the array, and use this path to determine which frames best 

match.  This path is determined by walking through the array one frame at a time, 

choosing one of the neighbors of the current position as the next step in the path.  The 

neighbor chosen is the neighbor with the least cost value.  The path is also restricted to be 

continuous, causal (i.e., to always move forward), and to have a slope limit (i.e., a limit to 

the number of consecutive horizontal or vertical steps).  The slope limit is somewhat 

arbitrary, but in practice a slope limit of 3 steps works well.  

This path is calculated for every possible starting point, and the path that yields 

the minimum average cost is saved.  From this path, the matching frames are determined. 

 

 

Figure 1:  The distance array for two similar motions.  The white line represents the 
minimum cost path connecting frame 0 and frame n of the weak kicking motion. 

 

3.4.1.2 Aligning Motions 
 

Second, after the transition points for the motions are determined, M1 is aligned to 

M0.  The starting position of M1 is found from the Newtonian motion formula:   
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p1 = p0 + v*t + ½ a*t2 

 

where p1 is the starting position of M1, p0 is the position of the final frame of M0, v is the 

velocity of the final frame of M0, t  is the time length of the transition, and a is the 

constant acceleration needed to achieve the velocity of the starting frame of M1 in the 

time of the transition.  The rotations of the root joint of M1 are found in a similar way. 

 

3.4.1.3 Searching for an Example 

 

At this point the endpoints for the desired transition are known, and hence we are 

ready to create the transition.  In order to preserve the “feel” of the motion, a segment of 

either M0 or M1 is used to build the transition.  The third step of creating the transition is 

to find this segment.  Both M0 and M1 are searched to find the motion segment that most 

closely matches the desired transition according to a “closeness” metric.  The metric we 

use is a measure of change in value from the start of the transition to the end of the 

transition, and the velocity at both endpoints.  Specifically, 

 

C = (m0 – m0TARGET) 2 + (m1 – m1TARGET) 2 + (ds – dsTARGET)2 

 

where m0 is the slope of the start of the motion segment, m1 is the slope at the end of the 

motion segment, ds is the change in value of the motion segment, and m0TARGET, m1TARGET, 

and dsTARGET are the values of the desired transition.  The number of frames between m0 
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and m1 equals the number of frames between m0TARGET and m1TARGET.  In other words, time 

scaling is disallowed.   

For each degree of freedom, the motion segment that produces the minimum 

value for C is used as the example segment in creating the final transition.  This process 

is repeated for each degree of freedom. 

  

3.4.1.4 Motion Modification 
 

The final step is to modify the motion to resemble the desired transition. The 

previous step yielded a motion segment that roughly matches what the transition should 

be at the endpoints.  This is necessary for the transition to be continuous with the original 

two motions, but so far no constraint has been made for the motion between the 

endpoints.  What is really desired is a motion that behaves relatively well but looks like 

what the character would have done if it had chosen the transition.  In other words, we 

want to control the general motion yet have it resemble the pre-existing motions.  In order 

to accomplish this, we construct the motion from both a smooth transition and the 

example motion.  High frequency information, which gives the motion its character, is 

taken from the example motion, while low frequency information is taken from the 

smooth transition.  The signal is reconstructed from this frequency information into the 

final signal.   

In order to accomplish this, we use a Laplacian pyramid decomposition [Burt and 

Adelson 1983], first introduced to motion signal processing in [Bruderlin and Williams 

1995].  Laplacian pyramids provide a method of breaking up a signal into different 
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frequency bands, any of which can be replaced before reconstructing the signal.  This 

allows for modification of the low frequency information, while preserving the high 

frequency information, thus preserving the “feel” of the motion.  Figure 2 shows an 

example of a 3-level Laplacian pyramid decomposition of a signal. 

 

 

 

 

 

Figure 2:  A motion signal (top), and its 3 level Laplacian pyramid decomposition 

 

A Laplacian pyramid of a signal is constructed as follows: 

 

1. Call the original signal V0. 

2. Downsample (scale down) the signal to create a signal with half the number of 

values, and label it V1 (call this the reduce operation).   
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3. Upsample (scale up) and linearly interpolate the values of V1 to create a signal 

with the same number of values as V0 (call this the project operation).  This signal 

has lost some of its higher frequency information, and looks smoother than V0. 

4. Subtract this signal from V0.  The resulting image, L1, represents the difference 

(or error) between the original signal and the downsampled image. 

5. Repeat this process to produce V2 and L2 from V1, and so on for as many levels as 

desired.  The original signal and the downsampled signals (i.e., V0, V1, V2, and 

V3) form the levels of a multi-resolution pyramid.  The signals representing the 

differences between adjacent levels of the multi-resolution pyramid (i.e., L1, L2, 

and L3) form the levels of a Laplacian pyramid. 

 

Each level of the Laplacian pyramid can be thought of as containing frequency 

information for the signal, where L1 contains the highest frequencies.  

Now, for each degree of freedom of each joint in the transition, the new motion 

segments are decomposed using a Laplacian pyramid, and the lowest level is replaced by 

a 3rd degree Bezier curve that is C1 continuous with both M0 and M1.  The signal is then 

reconstructed from the Laplacian pyramid to give a function which transitions with C1 

continuity from the end of M0 to the beginning of M1 while having the same “feel” as M0 

and M1.  Figure 3 shows an example of a signal that has been modified using this 

method. 
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Figure 3:  The result of motion modification.  The original signal (blue) is modified by 
replacing the third level of its Laplacian pyramid decomposition with the Bezier curve in 
green.  The final signal (red) is then reconstructed. 

 

The level to which the signal is decomposed before substitution and 

reconstruction can vary.  Substitution at the first level is equivalent to using none of the 

sample signal, while substitution at higher levels introduces more and more of the 

sampled signal.  Practice has shown that substitution at about the third level usually 

produces the best results. 

 

3.5 Experiments and Results 
 

The method has been tested on a set of seven motions, some similar, others 

dissimilar.  Transition points for similar motions were computed using dynamic 

timewarping, while transition points for dissimilar motions were manually set to the start 

frame of the motion.  Table 1 shows the time in seconds of computing the timewarp 

between a pair of motions.  Table 2 shows the number of frames in each motion.  
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Motion 
Number 1 2 3 4 5 6 7 

1 x 14.36 23.89 18.47 20.04 24.02 49.03 

2 14.62 x 14.11 11.187 12.21 14.39 30.03 

3 26.28 14.78 x 19.51 19.41 23.30 46.52 

4 19.19 11.40 19.07 x 14.96 18.13 35.88 

5 20.18 11.37 19.12 14.90 x 18.37 42.63 

6 24.99 21.08 35.32 25.42 27.97 x 64.12 

7 68.88 39.69 67.84 53.16 54.30 65.51 x 

 

Figure 4: Computation time in seconds of determining the timewarp between two 
motions.  The "from" motions are in the rows, and the "to" motions are in the columns. 

 
 
 
 
 

Motion 1 2 3 4 5 6 7 
Number 

of 
Frames 

201 116 193 149 158 188 378 

 

Figure 5: Number of frames in the test motions 
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Transitions between motions were created at runtime in response to user input.  

Calculating the transitions is virtually instantaneous and caused no noticeable delay in 

frame rate.  Figures 6–9 show the results of the method in creating a few different 

transitions. 

 

 

Figure 6: Walking to kicking 
 

 

Figure 7:  Walking to jumping 
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Figure 8:  Jumping to skipping 
 

 

Figure 9:  Kicking to jumping 
 

3.6 Discussion and Further Work 
 

The goal of this research was to provide a method for creating a motion transition 

in real time that is both believable and consistent with the motions being transitioned 

between.  Previous methods for creating transitions are either too compute intensive for 
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real time, or lack the nuances that make the motion appealing.  Our method attempts to 

meet these goals by modifying motion from a pre-existing source, using computationally 

simple transformations. 

We will now attempt to evaluate the strengths and weaknesses of this technique 

based on the criteria established at the beginning of the paper.  Namely: 

 

1. Computing the transition should be efficient enough to run in real time. 

2. Transitioning should be responsive. 

3. The transitioning method should not require excessive space resources 

(disk space, memory, etc.). 

4. The motion it creates should be continuous and believable.  

 

First, the transition is efficient enough to run in real time.  The timewarps are 

computed as a pre-processing step, and the transitions are created in real time. 

Second, transitioning is responsive.  The transitions happen instantaneously when 

the user presses a button.   

Third, this algorithm doesn’t require excessive space resources.  The lookup table 

for the transition points of the test set of seven motions took 40 kB in ASCII text format.  

The space required to store this table is O(mn2), where m is the number of frames in each 

motion, and n is the number of motions.  Since there were 7 motions, each motion had 

approximately 200 frames, and each entry in the table took approximately 4 bytes, the 

expected table size is 200*7*7*4 = 38.2 kB.   For a motion set containing 50 motions, 

this table would take 200*50*50*4 = 1.9MB.  This space could easily be further reduced 
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by using a binary representation, since each entry would take only one byte.  For 

example, the set containing 50 motions would reduce in size to 200*50*50*1 = 479 kB. 

Fourth, the motion created is arguably continuous and believable.  For transitions 

between similar motions, the effect is at least as good, and for transitions between 

dissimilar motions, the method produces motion superior to linear transitioning, though it 

is not always perfect.   

There are some limitations to the algorithm.  This method requires transition 

lengths to be a power of two, because of the use of Laplacian Pyramid decompositions.  

Laplacian pyramids work well for dimensions that are a power of two, but not as well for 

other values.  Though not straightforward, it is conceivable that this method could be 

extended to create transitions whose length is not a power of two, but in practice, this 

restriction isn’t a problem.   

Since this method deals only with forward kinematics, it is inherently susceptible 

to foot-skate and other artifacts.  An inverse kinematic solution should fit well within this 

framework, and the addition of IK would alleviate foot-skate and other problems. 
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Chapter 4 

Summary and Conclusions 

 

This thesis has presented a method of creating motion transitions that are both 

realistic and computable in real time.  Previous methods either were too compute-

intensive to run in real time, or sacrificed motion quality to be feasible for real time.   

Graph-based approaches show potential for creating motion transitions, but most 

of these methods are not fast enough for real-time applications.  One notable exception is 

snap-together motion.  Unfortunately, this method lacks the responsiveness required for 

all but a few applications.   

Linear motion transitioning is the method most commonly used currently in real-

time applications.  While this method works, it doesn’t always capture the feel of the 

motion.  Instead, it sacrifices motion quality for ease of computation. 

The method presented in this thesis accomplishes both goals of motion quality 

and ease of computation.  By using a pre-existing motion segment to construct the motion 

transition, the quality of the motion is preserved.  At the same time, no extraordinary 

computation is required, making this method feasible for real-time.  The transitioning 

mechanism has low latency and is therefore quite responsive.  Additionally, the method 

requires only a modest amount of space resources. 

There is still much research that can be done in this area.  It is a relatively new 

area of research, as the focus for graphics-related research for real-time applications has 

previously been on rendering technology.  As rendering methods have matured, there has 



www.manaraa.com

32 

been more interest in realistic motion techniques, and transitioning is one of the greatest 

needs for real-time applications.   

With respect to this method, some work needs to be done on the decomposition 

and subsequent reconstruction of the signal.  Only one method has been addressed in this 

research, namely Laplacian Pyramids, and another method may be more suitable.  There 

are a number of different transformations that take a signal from the time domain to the 

frequency domain, and it would be beneficial to see the effect of each on this method. 

The Laplacian Pyramid decomposition could also be further researched.  

Specifically, the current method requires the transition length to be a power of 2, but it 

would be nice to be able to create a transition of arbitrary length. 

This method is inherently susceptible to artifacts such as foot-skate because of the 

forward kinematic framework used.  An inverse kinematic solution should fit well in this 

framework, and would clean up many foot-skate problems. 
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