
www.manaraa.com

Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2005-11-10

Real-Time Motion Transition by Example Real-Time Motion Transition by Example

Cameron Quinn Egbert
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Computer Sciences Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Egbert, Cameron Quinn, "Real-Time Motion Transition by Example" (2005). Theses and Dissertations. 429.
https://scholarsarchive.byu.edu/etd/429

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F429&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F429&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/429?utm_source=scholarsarchive.byu.edu%2Fetd%2F429&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

www.manaraa.com

REAL-TIME MOTION TRANSITION BY EXAMPLE

by

Cameron Egbert

A thesis submitted to the faculty of

Brigham Young University

In partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science

Brigham Young University

August 2005

www.manaraa.com

Copyright © 2005 Cameron Egbert

All Rights Reserved

www.manaraa.com

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Cameron Egbert

This thesis has been read by each member of the following graduate committee and by
majority vote has been found to be satisfactory.

________________________ _________________________
Date Bryan Morse, Chair

________________________ _________________________
Date Parris Egbert

________________________ _________________________
Date Michael Jones

www.manaraa.com

www.manaraa.com

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Cameron Egbert
in its final form and have found that (1) its format, citations, and bibliographical style are
consistent and acceptable and fulfill university and department style requirements; (2) its
illustrative materials including figures, tables, and charts are in place; and (3) the final
manuscript is satisfactory to the graduate committee and is ready for submission to the
university library.

_______________________ _____________________________
Date Bryan Morse
 Chair, Graduate Committee

Accepted for the Department

 Parris K. Egbert
 Graduate Coordinator

Accepted for the College

G. Rex Bryce
Associate Dean
College of Physical and Mathematical
Sciences

www.manaraa.com

www.manaraa.com

ABSTRACT

REAL-TIME MOTION TRANSITION BY EXAMPLE

Cameron Egbert

Department of Computer Science

Master of Science

Motion transitioning is a common task in real-time applications such as games.

While most character motions can be created a priori using motion capture or hand

animation, transitions between these motions must be created by an animation system at

runtime. Because of this requirement, it is often difficult to create a transition that

preserves the feel that the actor or animator has put into the motion. An additional

difficulty is that transitions must be created in real-time. This paper provides a method of

creating motion transitions that is both computationally feasible for interactive speeds,

and preserves the feel of the original motions. To do this, we build the transition from

both a procedural motion and a motion segment taken from the motions being

transitioned between.

www.manaraa.com

vi

Table of Contents

1. Introduction.. 1

1.1 Background.. 1

1.2 Statement of the Problem... 2

1.3 Thesis Statement .. 4

2. Motion Transitioning Methods .. 5

2.1 Current Methods .. 5

2.2 Approach Presented in This Thesis ... 7

3. Real-Time Motion Transition by Example.. 9

3.1 Abstract.. 9

3.2 Introduction.. 9

3.3 Related Work ... 12

3.4 Real-Time Motion Transition by Example.. 16

3.4.1 Finding Transition Points.. 17

3.4.1.1 Dynamic Timewarping…………………………………………… 18

3.4.1.2 AligningMotions…………………………………………………...20

3.4.1.3 Searching for an Example……………………………..................... 21

3.4.1.4 Motion Modification…………………………………..................... 22

3.5 Experiments and Results.. 25

3.6 Discussion and Further Work .. 28

4. Summary and Conclusions .. 31

5. Bibliography .. 33

www.manaraa.com

vii

List of Figures

Figure 1: The distance array for two similar motions.. 20

Figure 2: A motion signal and its Laplacian pyramid decomposition. 23

Figure 3: The result of motion modification. .. 25

Figure 4: Computation time in seconds of determining a timewarp................................. 26

Figure 5: Number of frames in the test motions. .. 26

Figure 6: Walking to kicking .. 27

Figure 7: Walking to jumping.. 27

Figure 8: Jumping to skipping ... 28

Figure 9: Kicking to jumping... 28

www.manaraa.com

www.manaraa.com

1

Chapter 1

Introduction

1.1 Background

 Realistic character motion is a necessity for computer graphics applications such

as movies and games. Three main methods exist to create motion for a virtual character-

motion capture, hand animation, and simulation. Motion capture is the process of

recording the motion of a live human actor. Hand animation refers to the use of a

software package to manipulate a 3D model of a character over time in order to achieve

an animation. In simulation, the motion of the character is computed using a physical

model.

Simulation methods are generally thought to be too unrealistic for games. In

addition, since an interactive application, such as a game, must generate animation on the

fly, and both motion capture and hand animation produce pre-made motion, these

methods can only be used if further processing is done.

The method most commonly used in games is to create several base motion

segments (i.e., walking, running, jumping, etc.) using motion capture or hand animation,

and transition between these motions on the fly [Mizuguchi et al. 2001; Gleicher et al.

2002].

 Most current animation systems use skeletal animation. Each model has both a

skin and a skeleton. The skin is made up of a polygonal mesh, and this mesh is what is

seen in the final rendering. The skeleton is made up of a hierarchy of bones, which

www.manaraa.com

2

define the position of the skin. Moving the skeleton, therefore, moves the skin of the

model; much like a human skeleton moves a human body. Usually, a large number of

skin vertices will map to very few skeleton bones. This makes it so that only the

relatively few skeleton bones must be manipulated in order to move the model, instead of

moving each vertex of the model’s skin.

A motion is a series of transformations for each of the bones of the skeleton.

Each bone transformation is expressed in terms of Euler rotations of each of the three

axes, X, Y, and Z. These three orientations can also be expressed in terms of a single

quaternion, which removes the ambiguities of the Euler rotation representation. In

addition, each bone has a constant length. A motion for a particular skeleton, then, is

defined as a continuous function:

M(f) = (pR(f), q1(f)…qn(f))

where pR(f) is the position of the root, and qi(f) is the orientation of the ith bone. Each

parameter vector M(f) is called a frame, and f is called the frame index. A transition is a

motion that links two other motions together.

1.2 Statement of the Problem

The goal of this research has been to find a method to create plausible transitions

for interactive applications. Since the point of transition is not known ahead of time,

www.manaraa.com

3

these transitions must be created dynamically. This puts more severe constraints on the

transitioning method than would be needed for an offline method.

Ideally, the method of creating the transition should have the following properties,

in order of decreasing necessity:

1. Computing the transition should be efficient enough to run in real time.

2. Transitioning should be responsive.

3. The transitioning method should not require excessive space resources (disk

space, memory, etc.).

4. The motion created should be continuous and believable.

These are the basic criteria for any algorithm that creates a transition. The first

three are hard constraints for real-time applications. If the algorithm doesn’t meet these

requirements, it is of no use. The fourth is a softer constraint and is somewhat subjective.

At the very least, the algorithm should produce a motion for which C1 continuity is

preserved for the position and rotation of the joints.

We have produced a method that is feasible for real-time applications and

improves on the motion quality available from existing transitioning methods. While

current methods either sacrifice interactivity or motion quality, our method preserves

both. We do this by using a Laplacian pyramid decomposition to warp animation

information from the two motions being transitioned between in order to create the

transition. This preserves the same “feel” of the original motions in creating the

transition, while being computationally efficient enough for interactive rates.

www.manaraa.com

4

1.3 Thesis Statement

 Believable motion transitions can be created by modifying pre-stored motion

using a Laplacian pyramid decomposition. In addition, these transitions can be computed

at interactive rates, are responsive to user input, and don’t require extraordinary space

resources, making the algorithm feasible for real-time applications.

www.manaraa.com

5

Chapter 2

Motion Transitioning Methods

2.1 Current Methods

A brief overview of a few methods currently in use for creating transitions will

now be given. For a more in depth review of these methods, refer to Chapter 3.

Currently, the most widely used method of creating transitions involves linearly

interpolating between two motions. A pre-determined number of frames at the end of the

first motion are overlapped with the first frames of the second motion, and the values of

each are linearly interpolated, creating a smooth transition between the motions.

Unfortunately, this transition may not be realistic, especially in the case of extremely

dissimilar motions. Even when the motions are similar, the problem of synchronizing

motions is not addressed using this method alone. Transitioning between two walking

motions that are at different points in their cycle will give an unrealistic transition, even

though the motions are similar.

This problem is addressed by using dynamic timewarping [Bruderlin and

Williams 1995; Kovar and Gleicher 2003]. Dynamic timewarping creates a function that

synchronizes both motions to be at similar poses at any given time by first determining

the similarity of each pair of frames for both motions. A distance function is used to

determine this similarity. Then the synchronization function is determined by finding the

best path through these similarity values. The computation of this function can be done

as an offline step by creating a lookup table. This table is then referenced at runtime to

www.manaraa.com

6

synchronize the two motions. While timewarping alleviates the problem of

unsynchronized motions, it doesn’t address the problem of two dissimilar motions.

Other methods for creating transitions have been proposed. Rose et al. [1996],

use spacetime constraints to create transitions. In their method, a combination of

dynamic and kinematic constraints is placed on the skeleton, and a transition is generated

using these constraints. This method gives realistic motion for short transitions (between

about 0.3 and 0.6 seconds) but is not computationally efficient enough for real-time

applications.

Kovar, et al. [2002] use a method they call a Motion Graph which is a way of

arranging motion data into a graph. Traversing this graph gives a new motion. Each

node of the graph corresponds to a common pose, such as standing. Traversing an edge

corresponds to playing a short motion segment between two poses. In order to determine

an entire motion, a traversal through the graph between two particular nodes is computed

using a set of constraints, after which the motion is played by traversing the graph node

by node. Motion graphs are not suitable for interactive applications because of the

computation time needed to find a traversal of the graph.

An extension to Motion Graphs, called Snap-together motion [Gleicher et al.

2003], processes a corpus of motion into a graph similar to a motion graph. Snap-

together motion differs from Motion Graphs primarily in the way that it produces motion.

Instead of computing an entire traversal through the graph, each edge traversal is

determined one by one at run-time from the user’s input. In this way, the graph can be

used for real-time applications. The downfall of this method is that once an edge is

www.manaraa.com

7

taken, no further input can be given until the motion reaches the next node. While this is

sufficient for some real-time applications, in general, more interactivity is required.

2.2 Approach Presented in this Thesis

 This thesis proposes a method that will be feasible for real-time applications, and

give more believable motion than a simple linear transition. Specifically, the motion for

the transition is adapted from a segment of motion from one of the two motions being

transitioned between. This segment can be chosen to resemble any specific motion. This

ability is leveraged to choose a segment that resembles the desired transition. The

segment chosen is then warped to match this transition even more closely. In this way

the method enables the synthesis of a transition that preserves the same “feel” of the

original motion while producing a motion that is feasible as a continuous transition.

The remainder of the thesis will be presented as follows: Chapter 3 is a paper

describing the research done that will be submitted for publication, and Chapter 4

contains a summary and conclusions.

www.manaraa.com

8

www.manaraa.com

9

Chapter 3

Real-Time Motion Transition by Example

3.1 Abstract

Motion transitioning is a common task in real-time applications such as games.

While most character motions can be created a priori using motion capture or hand

animation, transitions between these motions must be created by an animation system at

runtime. Because of this requirement, it is often difficult to create a transition that

preserves the feel that the actor or animator has put into the motion. An additional

difficulty is that transitions must be created in real-time. This paper provides a method of

creating motion transitions that is computationally feasible for interactive speeds and that

preserves the feel of the original motions. To do this, we build the transition from both a

procedural motion and a motion segment taken from the motions being transitioned

between.

3.2 Introduction

Realistic character motion is becoming a necessity for real-time applications such

as games. As real-time rendering technology is advancing to the point of photo-realism,

more and more attention is being placed on realistic motion techniques, especially in the

case of virtual characters.

www.manaraa.com

10

One basic motion technique required in real-time applications is transitioning.

Typically, a set of base motions (i.e., walking, running, jumping, etc.) is created by an

animator or by motion capture, and then transitions are created to link these motions

together. Because it is not known beforehand when the character will need to transition,

and because it is not feasible to create every possible transition ahead of time, transitions

are usually created at run-time [Mizuguchi et al. 2001; Menache, 2000].

We propose the following criteria to measure the effectiveness of methods used

for creating realistic motion transitions, in order of decreasing necessity:

1. Computing the transition should be efficient enough to run in real time.

2. Transitioning should be responsive.

3. The transitioning method should not require excessive space resources

(disk space, memory, etc.).

4. The motion it creates should be continuous and believable.

First, and most importantly, the transitioning algorithm must be efficient enough

to be computed in real time. This is a hard constraint. If the algorithm doesn’t run in real

time, it is of no use to an interactive application. This constraint is somewhat of a

moving target, as compute power is constantly increasing. However, an algorithm that

runs in exponential time will likely not achieve real-time performance regardless of the

available compute power.

Second, transitioning should be responsive. Transitioning should start as an

immediate response to some user input. In other words, latency should be minimal. If

www.manaraa.com

11

the user presses a jump button, the virtual character should jump immediately, not after a

delay. For a few applications this is not as necessary, but in general this is a requirement

of real time applications.

Third, the transitioning method should not require extraordinary space resources.

For example, an algorithm that pre-computes every possible transition and stores it on

disk to be looked up when needed, while computationally efficient at run-time, would

constitute an algorithm that requires excessive resources. Current real-time environments

have space and resource limitations, some of which are quite restrictive. Thus, the

technique should be such that it can meet these restrictions without sacrificing the other

system goals. This constraint is also a moving target, as resource constraints become less

severe with each new generation of hardware.

Fourth, the motion it creates should be believable. For example, in a transition

from a walking animation to a running animation, when a foot touches the ground, it

shouldn’t move. The transition should also look natural, like something the character

would do. At the very least, the motion should be continuous from the end of the first

motion to the beginning of the second motion. In particular, at least C1 continuity should

be preserved for the joint orientations. Believability is the softest constraint, since

believability is a subjective term, and perfectly believable motion is still an unsolved

problem. However, reasonable believability is necessary.

Motion for a particular skeleton is defined as a continuous function:

M(f) = (pR(f), q1(f)…qn(f))

www.manaraa.com

12

where pR(f) is the position of the root, and qi(f) is the orientation of the ith joint. Each

parameter vector M(f) is called a frame, and f is called the frame index. A transition is a

motion that links two other motions together in a continuous fashion.

3.3 Related Work

One of the most widely used methods of creating real-time transitions involves

linearly interpolating between two motions [Menache, 2000; Mizuguchi et al. 2001]. A

pre-determined number of frames at the end of the first motion are overlapped with the

first frames of the second motion, and the values of each are linearly interpolated, with

interpolation values decreasing from 1.0 to 0.0 for the first motion, and increasing from

0.0 to 1.0 for the second motion. This creates a smooth transition such that the first frame

of the transition is a frame from the first motion and the last frame is a frame from the

second motion. Formally, if M0 is the first motion, which has m frames, M1 is the second

motion, which has n frames, and T is the desired transition, which has u frames, then

T(x) = M0(m - u + x) * (1 - x/u) + M1(x) * (x/u)

As an example, for a 10 frame transition between motions M0, and M1, the first

frame of the transition would be 1*M0(n-10) + 0*M1(0), the next frame would be

0.9*M0(n-9) + 0.1*M1(1), and the last frame would be 0*M0(n) + 1*M1(10). In practice,

this interpolation is usually done as a spherical linear interpolation on the orientation

quaternions, as opposed to simply interpolating each degree of freedom.

www.manaraa.com

13

This method is efficient, responsive, and requires no space other than that

required for the original motions. The downfall of this method is that it doesn’t always

produce realistic motion. The motion is synthesized from two motions that may or may

not be similar (a walk to a jump). Even if they are similar, they may not be synchronized.

For example, a walk with left foot forward to a run with left foot forward will cause the

transition to look like a half step from left foot forward to both feet at neutral, then back

to left foot forward, instead of left foot forward, neutral, then right foot forward.

One proposed method of synchronizing the motions is to use dynamic

timewarping [Bruderlin and Williams 1995; Kovar and Gleicher 2003]. Dynamic

timewarping creates a function that synchronizes both motions to be at similar poses at

any given time. This is usually done by computing a distance function between each pair

of frames for both motions, which gives a 2-dimensional distance array, and then

searching for a path through this array that follows the valleys. While it is not trivial to

compute the distance metric between each frame of both motions for the distance array,

this can usually be done as an offline step. The timewarp can then be computed from this

at runtime with minimal overhead using a dynamic programming solution. This method

does introduce significant storage consumption, as a distance array has to be stored for

each pair of motions. Thus, the array will require O(n2) storage. Timewarping also

doesn’t address the problem of two dissimilar motions.

Park et al. [2002] use the idea of dynamic timewarping to align clips of motion

before interpolating between them. In addition, the motion clips are parameterized to

provide a method for controlling the synthesized motion. If these interpolations are

parameterized correctly, a large amount of control can be had over the animation. Their

www.manaraa.com

14

approach allows for specification of locomotion over a range of directions and speeds.

Unfortunately, this method is geared toward generating motion from a set of similar

motions, and not between two arbitrary (possibly different) motions.

Other methods for creating transitions have been proposed. Rose et al. [1996]

propose a method of generating transitions using spacetime constraints. In their method,

a combination of dynamic and kinematic constraints is placed on the skeleton, and a

transition is generated using these constraints. This method gives realistic motion for

short transitions (between about 0.3 and 0.6 seconds) but is not computationally efficient

enough for real-time applications.

Physically-based motion synthesis is another method of synthesizing motion

[Hodgins et al. 1995; Liu et al. 2002]. In these methods, Motion is generated from a

dynamic simulation of the character. It is prohibitively difficult to produce realistic

motion using physically-based approaches except for a few special cases. Additionally,

the level of realism is often proportional to processing complexity, further hindering the

achievement of realism. As processing complexity is lowered to the critical point of real-

time performance, motion quality degrades. These approaches also fail to capture the

nuances of human motion. The motion is physically valid, which is a good first step,

since human motion is also physically valid, but the motion produced lacks the feel of a

living character. Humans are noisy creatures, whose motion is never exactly repeatable,

while simulations give “perfect” motion that can be recreated exactly.

Another approach is to construct a mathematical model from a set of motion

capture data. Hidden markov models [Brand et al. 2000] and switched linear dynamic

systems [Li et al. 2002] are among the most popular approaches. These methods can

www.manaraa.com

15

produce arbitrary motion that resembles the pre-existing cache of motion capture data,

but at the cost of low control and high processing requirements.

Another approach, Motion Graphs [Kovar et al. 2002], converts a corpus of

motion data into a graph representation, which gives new motion when traversed. Nodes

in the graph correspond to frames that are similar in two or more motions (local minima

of the distance array), and edges correspond to motion segments in-between these frames.

A motion is created by calculating a traversal through the graph given a set of constraints.

Motion graphs are not suitable for interactive applications because of the computation

time needed to find a traversal of the graph.

An extension to Motion Graphs, Snap-together motion [Gleicher et al. 2003]

processes a corpus of motion into a graph similar to a motion graph. The main difference

between Motion Graphs and Snap-together motion is the process of creating motion.

Instead of calculating an entire traversal through the graph, each edge traversal is

determined one at a time at run-time from the user’s input. For example, a simple Snap-

together motion graph might consist of three nodes: one corresponding to a standing

pose, another corresponding to a crouching pose, and the last corresponding to a kneeling

pose. The graph also has three edges, one between each pair of nodes. Suppose the

character starts in the standing pose. If no input is given, the character will keep

standing. If the user tells the character to crouch, the edge from the standing pose node to

the crouching pose node will be taken, and the corresponding motion played. From this

pose, the character can then go back to crouching, or to kneeling. A walking motion

would be an edge from the standing node that loops back to the standing node after two

steps. Snap-together motion is a step in the direction of interactivity, since the transitions

www.manaraa.com

16

between nodes are taken as the user gives input, instead of computing the entire path

through the motion graph. However, this approach doesn’t quite achieve full

responsiveness. Once an edge is taken, i.e., a motion segment has started, the motion of

the character can’t be interrupted until reaching a node. This is sufficient for some

applications but in general does not produce enough responsiveness.

In another graph-based approach, Arikan and Forsyth [2002] applied a

randomized algorithm to search for motions from a hierarchy of transition graphs. In

later work, Arikan et al. [2003] created a motion by using a similar graph structure but

satisfied user-specified annotations in the creation of the resulting motion. When the

number of example motions becomes too large, it becomes prohibitively time-consuming

to search through these graph structures for a suitable motion.

Pullen and Bregler [2002] propose a method of using motion capture to assist an

artist in creating an animation. In their method, the artist creates a rough animation using

conventional key-framing, and motion capture data is used to enhance the animation in

order to make it look more lifelike. Part of our method leverages this research in making

the final transition more natural.

3.4 Real-Time Motion Transition by Example

In order to produce a method of creating transitions that meet the four proposed goals,

we propose a new method that is both feasible for real-time applications and produces

more believable motion than a simple linear transition. The “feel” of the motion is

www.manaraa.com

17

preserved by adapting pre-existing motion from the two motions being transitioned

between.

This approach at producing real-time motion transitions is encapsulated in a 4-step

process:

1. Find transition points.

2. Align motions.

3. Search for an example.

4. Motion modification.

In the following discussion, M0 is the motion that is being transitioned from, M1

is the motion that is being transitioned to, T is the transition, and t is the length of the

transition (in frames).

3.4.1 Finding Transition Points

First, since the start of the transition is a frame from M0, and the end of the

transition is a frame from M1, transition points are found for M0 and M1. The transition

point for M0 is the frame at which the transition is initiated. For example, if the character

is on frame 10 of a walking animation when the user initiates the transition, the transition

point for M0 is frame 10. The transition point of M1 is either set manually, or found

using a method similar to dynamic timewarping. Motions that should be played from

start to finish (jumping, kicking, punching, etc.) have their “transition to” frame set

www.manaraa.com

18

manually to the first frame, while the transition point for two similar motions (walking to

running) is computed using dynamic timewarping. These transition points are kept in a

lookup table for use at runtime.

Keeping a lookup table of the matching frames requires storage space to hold the

frame of each motion that could be transitioned to, for each frame in each motion.

Therefore, if there are n motions, and each motion has m frames, the space required to

store these values is n*m*n. Typically a character will have up to 50 motions, at about

200 frames per motion. Since each value of a table is a frame index, these values can be

stored in 1 byte, which requires 500,000 bytes (479 kB) to store all of the tables, which is

not an excessive space requirement. At run-time, the necessary value is simply read from

this lookup table. Since we want the transition to look natural, we find the transition

point in M1 which matches what the frame from M0 would have been had there been no

transition. For example, if a 30 frame transition is initiated on a walk cycle when the left

foot is forward, and at the end of 30 frames, the character would have had its right foot

forward, we want to transition to a frame in M1 that is similar to the right foot forward

pose. Specifically, given frame i in M0, to find the correct “transition to” frame j in M1

(after a transition of length t), just read the lookup table value for M0(i+t), instead of

simply M0(i).

3.4.1.1 Dynamic Timewarping

To determine a timewarp, we use the same distance metric as in [Kovar et al.

2002]. Specifically, to compute the distance between two frames Fi and Fj, two point

www.manaraa.com

19

clouds representing each frame are compared. The point clouds are created from the joint

positions of the skeleton. In order to take into account derivative information, a small

neighborhood of frames about Fi and Fj are used to create the point clouds. Finally, the

optimal sum of squared distances is computed between the two point clouds, allowing for

rigid 2D transformations. The distance metric is defined as:

∑ −=
k

kjzxkikzxji pTpwFFD
o

o

2

,,,,,, 0
0

min),(θθ

where pi,k is the kth point in the cloud generated from frame i and Tθ,x0,z0 is a linear

transformation consisting of a rotation of θ degrees about the vertical axis followed by a

translation of (x0, z0). wk are weights that sum to one and give more importance to Fi and

Fj, and less importance to the frames at the edges of the neighborhoods.

This has the following closed form solution:

)cos'sin'(

)sin'cos'(

)''()''(
)''()''(

arctan

0

0

θθ

θθ

θ

zxzz

zxxx

zzxxzzxxw
zxxzzxzxw

iii iii

iii iii

−−=

−−=

−−−

−−−
=

∑
∑

where ∑= i ii xwx and the other barred terms are similar.

This distance metric is calculated for each pair of frames, which produces a

distance array. Figure 1 shows an example distance array for the weak kick and strong

kick actions.

www.manaraa.com

20

Matching frames are calculated from this array. The idea is to create a minimum

cost connecting path through the array, and use this path to determine which frames best

match. This path is determined by walking through the array one frame at a time,

choosing one of the neighbors of the current position as the next step in the path. The

neighbor chosen is the neighbor with the least cost value. The path is also restricted to be

continuous, causal (i.e., to always move forward), and to have a slope limit (i.e., a limit to

the number of consecutive horizontal or vertical steps). The slope limit is somewhat

arbitrary, but in practice a slope limit of 3 steps works well.

This path is calculated for every possible starting point, and the path that yields

the minimum average cost is saved. From this path, the matching frames are determined.

Figure 1: The distance array for two similar motions. The white line represents the
minimum cost path connecting frame 0 and frame n of the weak kicking motion.

3.4.1.2 Aligning Motions

Second, after the transition points for the motions are determined, M1 is aligned to

M0. The starting position of M1 is found from the Newtonian motion formula:

www.manaraa.com

21

p1 = p0 + v*t + ½ a*t2

where p1 is the starting position of M1, p0 is the position of the final frame of M0, v is the

velocity of the final frame of M0, t is the time length of the transition, and a is the

constant acceleration needed to achieve the velocity of the starting frame of M1 in the

time of the transition. The rotations of the root joint of M1 are found in a similar way.

3.4.1.3 Searching for an Example

At this point the endpoints for the desired transition are known, and hence we are

ready to create the transition. In order to preserve the “feel” of the motion, a segment of

either M0 or M1 is used to build the transition. The third step of creating the transition is

to find this segment. Both M0 and M1 are searched to find the motion segment that most

closely matches the desired transition according to a “closeness” metric. The metric we

use is a measure of change in value from the start of the transition to the end of the

transition, and the velocity at both endpoints. Specifically,

C = (m0 – m0TARGET) 2 + (m1 – m1TARGET) 2 + (ds – dsTARGET)2

where m0 is the slope of the start of the motion segment, m1 is the slope at the end of the

motion segment, ds is the change in value of the motion segment, and m0TARGET, m1TARGET,

and dsTARGET are the values of the desired transition. The number of frames between m0

www.manaraa.com

22

and m1 equals the number of frames between m0TARGET and m1TARGET. In other words, time

scaling is disallowed.

For each degree of freedom, the motion segment that produces the minimum

value for C is used as the example segment in creating the final transition. This process

is repeated for each degree of freedom.

3.4.1.4 Motion Modification

The final step is to modify the motion to resemble the desired transition. The

previous step yielded a motion segment that roughly matches what the transition should

be at the endpoints. This is necessary for the transition to be continuous with the original

two motions, but so far no constraint has been made for the motion between the

endpoints. What is really desired is a motion that behaves relatively well but looks like

what the character would have done if it had chosen the transition. In other words, we

want to control the general motion yet have it resemble the pre-existing motions. In order

to accomplish this, we construct the motion from both a smooth transition and the

example motion. High frequency information, which gives the motion its character, is

taken from the example motion, while low frequency information is taken from the

smooth transition. The signal is reconstructed from this frequency information into the

final signal.

In order to accomplish this, we use a Laplacian pyramid decomposition [Burt and

Adelson 1983], first introduced to motion signal processing in [Bruderlin and Williams

1995]. Laplacian pyramids provide a method of breaking up a signal into different

www.manaraa.com

23

frequency bands, any of which can be replaced before reconstructing the signal. This

allows for modification of the low frequency information, while preserving the high

frequency information, thus preserving the “feel” of the motion. Figure 2 shows an

example of a 3-level Laplacian pyramid decomposition of a signal.

Figure 2: A motion signal (top), and its 3 level Laplacian pyramid decomposition

A Laplacian pyramid of a signal is constructed as follows:

1. Call the original signal V0.

2. Downsample (scale down) the signal to create a signal with half the number of

values, and label it V1 (call this the reduce operation).

www.manaraa.com

24

3. Upsample (scale up) and linearly interpolate the values of V1 to create a signal

with the same number of values as V0 (call this the project operation). This signal

has lost some of its higher frequency information, and looks smoother than V0.

4. Subtract this signal from V0. The resulting image, L1, represents the difference

(or error) between the original signal and the downsampled image.

5. Repeat this process to produce V2 and L2 from V1, and so on for as many levels as

desired. The original signal and the downsampled signals (i.e., V0, V1, V2, and

V3) form the levels of a multi-resolution pyramid. The signals representing the

differences between adjacent levels of the multi-resolution pyramid (i.e., L1, L2,

and L3) form the levels of a Laplacian pyramid.

Each level of the Laplacian pyramid can be thought of as containing frequency

information for the signal, where L1 contains the highest frequencies.

Now, for each degree of freedom of each joint in the transition, the new motion

segments are decomposed using a Laplacian pyramid, and the lowest level is replaced by

a 3rd degree Bezier curve that is C1 continuous with both M0 and M1. The signal is then

reconstructed from the Laplacian pyramid to give a function which transitions with C1

continuity from the end of M0 to the beginning of M1 while having the same “feel” as M0

and M1. Figure 3 shows an example of a signal that has been modified using this

method.

www.manaraa.com

25

0.9972

0.9974

0.9976

0.9978

0.998

0.9982

0.9984

0.9986

0.9988

0.999

0 16 32 48 64

frame

va
lu

e

Figure 3: The result of motion modification. The original signal (blue) is modified by
replacing the third level of its Laplacian pyramid decomposition with the Bezier curve in
green. The final signal (red) is then reconstructed.

The level to which the signal is decomposed before substitution and

reconstruction can vary. Substitution at the first level is equivalent to using none of the

sample signal, while substitution at higher levels introduces more and more of the

sampled signal. Practice has shown that substitution at about the third level usually

produces the best results.

3.5 Experiments and Results

The method has been tested on a set of seven motions, some similar, others

dissimilar. Transition points for similar motions were computed using dynamic

timewarping, while transition points for dissimilar motions were manually set to the start

frame of the motion. Table 1 shows the time in seconds of computing the timewarp

between a pair of motions. Table 2 shows the number of frames in each motion.

www.manaraa.com

26

Motion
Number 1 2 3 4 5 6 7

1 x 14.36 23.89 18.47 20.04 24.02 49.03

2 14.62 x 14.11 11.187 12.21 14.39 30.03

3 26.28 14.78 x 19.51 19.41 23.30 46.52

4 19.19 11.40 19.07 x 14.96 18.13 35.88

5 20.18 11.37 19.12 14.90 x 18.37 42.63

6 24.99 21.08 35.32 25.42 27.97 x 64.12

7 68.88 39.69 67.84 53.16 54.30 65.51 x

Figure 4: Computation time in seconds of determining the timewarp between two
motions. The "from" motions are in the rows, and the "to" motions are in the columns.

Motion 1 2 3 4 5 6 7
Number

of
Frames

201 116 193 149 158 188 378

Figure 5: Number of frames in the test motions

www.manaraa.com

27

Transitions between motions were created at runtime in response to user input.

Calculating the transitions is virtually instantaneous and caused no noticeable delay in

frame rate. Figures 6–9 show the results of the method in creating a few different

transitions.

Figure 6: Walking to kicking

Figure 7: Walking to jumping

www.manaraa.com

28

Figure 8: Jumping to skipping

Figure 9: Kicking to jumping

3.6 Discussion and Further Work

The goal of this research was to provide a method for creating a motion transition

in real time that is both believable and consistent with the motions being transitioned

between. Previous methods for creating transitions are either too compute intensive for

www.manaraa.com

29

real time, or lack the nuances that make the motion appealing. Our method attempts to

meet these goals by modifying motion from a pre-existing source, using computationally

simple transformations.

We will now attempt to evaluate the strengths and weaknesses of this technique

based on the criteria established at the beginning of the paper. Namely:

1. Computing the transition should be efficient enough to run in real time.

2. Transitioning should be responsive.

3. The transitioning method should not require excessive space resources

(disk space, memory, etc.).

4. The motion it creates should be continuous and believable.

First, the transition is efficient enough to run in real time. The timewarps are

computed as a pre-processing step, and the transitions are created in real time.

Second, transitioning is responsive. The transitions happen instantaneously when

the user presses a button.

Third, this algorithm doesn’t require excessive space resources. The lookup table

for the transition points of the test set of seven motions took 40 kB in ASCII text format.

The space required to store this table is O(mn2), where m is the number of frames in each

motion, and n is the number of motions. Since there were 7 motions, each motion had

approximately 200 frames, and each entry in the table took approximately 4 bytes, the

expected table size is 200*7*7*4 = 38.2 kB. For a motion set containing 50 motions,

this table would take 200*50*50*4 = 1.9MB. This space could easily be further reduced

www.manaraa.com

30

by using a binary representation, since each entry would take only one byte. For

example, the set containing 50 motions would reduce in size to 200*50*50*1 = 479 kB.

Fourth, the motion created is arguably continuous and believable. For transitions

between similar motions, the effect is at least as good, and for transitions between

dissimilar motions, the method produces motion superior to linear transitioning, though it

is not always perfect.

There are some limitations to the algorithm. This method requires transition

lengths to be a power of two, because of the use of Laplacian Pyramid decompositions.

Laplacian pyramids work well for dimensions that are a power of two, but not as well for

other values. Though not straightforward, it is conceivable that this method could be

extended to create transitions whose length is not a power of two, but in practice, this

restriction isn’t a problem.

Since this method deals only with forward kinematics, it is inherently susceptible

to foot-skate and other artifacts. An inverse kinematic solution should fit well within this

framework, and the addition of IK would alleviate foot-skate and other problems.

Acknowledgements: This work was made possible through a donation from Electronic

Arts. The data used in this project was obtained from mocap.cs.cmu.edu. The database

was created with funding from NSF EIA-0196217.

www.manaraa.com

31

Chapter 4

Summary and Conclusions

This thesis has presented a method of creating motion transitions that are both

realistic and computable in real time. Previous methods either were too compute-

intensive to run in real time, or sacrificed motion quality to be feasible for real time.

Graph-based approaches show potential for creating motion transitions, but most

of these methods are not fast enough for real-time applications. One notable exception is

snap-together motion. Unfortunately, this method lacks the responsiveness required for

all but a few applications.

Linear motion transitioning is the method most commonly used currently in real-

time applications. While this method works, it doesn’t always capture the feel of the

motion. Instead, it sacrifices motion quality for ease of computation.

The method presented in this thesis accomplishes both goals of motion quality

and ease of computation. By using a pre-existing motion segment to construct the motion

transition, the quality of the motion is preserved. At the same time, no extraordinary

computation is required, making this method feasible for real-time. The transitioning

mechanism has low latency and is therefore quite responsive. Additionally, the method

requires only a modest amount of space resources.

There is still much research that can be done in this area. It is a relatively new

area of research, as the focus for graphics-related research for real-time applications has

previously been on rendering technology. As rendering methods have matured, there has

www.manaraa.com

32

been more interest in realistic motion techniques, and transitioning is one of the greatest

needs for real-time applications.

With respect to this method, some work needs to be done on the decomposition

and subsequent reconstruction of the signal. Only one method has been addressed in this

research, namely Laplacian Pyramids, and another method may be more suitable. There

are a number of different transformations that take a signal from the time domain to the

frequency domain, and it would be beneficial to see the effect of each on this method.

The Laplacian Pyramid decomposition could also be further researched.

Specifically, the current method requires the transition length to be a power of 2, but it

would be nice to be able to create a transition of arbitrary length.

This method is inherently susceptible to artifacts such as foot-skate because of the

forward kinematic framework used. An inverse kinematic solution should fit well in this

framework, and would clean up many foot-skate problems.

www.manaraa.com

33

Bibliography

ARIKAN, O., AND FORSYTHE, D. A. 2002. Interactive motion generation from examples.

ACM Transaction on Graphics 21, 3, 483–490.

ARIKAN, O., FORSYTH, D. A., AND O’BRIEN, J. 2003. Motion synthesis from annotations.

ACM Transactions on Graphics 22, 3, 402–408.

BRAND, M., AND HERTZMANN, A. 2000. Style machines. In Proceedings of ACM

SIGGRAPH 2000, 183–192.

BRUDERLIN, A., AND WILLIAMS, L. 1995. Motion signal processing. In Proceedings of

ACM SIGGRAPH 1995, 97–104.

BURT, P., AND ADELSON, E. 1983. The Laplacian pyramid as a compact image code.

IEEE Transactions on Communications, 31(4):532-540.

FANG, A. C., AND POLLARD, N. S. 2003. Efficient synthesis of physically valid human

motion. In Proceedings of ACM SIGGRAPH 2003, 417-426.

GLEICHER, M. 1997. Motion editing with spacetime constraints. In Proceedings of the

1997 Symposium on Interactive 3D Graphics, 139–148.

www.manaraa.com

34

GLEICHER, M., SHIN, H., KOVAR, L., AND JEPSEN, A. 2002. Snap-together motion:

Assembling Run-Time Animation. In Symposium on Interactive 3D Graphics 2003.

HODGINS, JESSICA K., WOOTEN, WAYNE L., BROGAN, DAVID C., AND O’BRIEN, JAMES F.

1995. Animating human athletics. In Proceedings of ACM SIGGRAPH 1995, 71–78.

KOVAR, L., AND GLEICHER, M. 2003. Flexible automatic motion blending with

registration curves. In Proceedings of ACM SIGGRAPH/Eurographics Symposium on

Computer Animation 2003, 214–224

KOVAR, L., GLEICHER, M., AND PIGHIN, F. 2002. Motion graphs. ACM Transactions on

Graphics 21, 3, 473–482.

LI, Y., WANG, T., AND SHUM, H. 2002. Motion texture: A two-level statistical model for

character motion synthesis. ACM Transactions on Graphics 21, 3, 465–472.

LIU, C., AND POPOVIĆ, Z. 2002. Synthesis of complex dynamic character motion from

simple animations. In Proceedings of ACM SIGGRAPH 2002, 408–416.

MENACHE, A. 2000. Understanding Motion Capture for Computer Animation and Video

Games. Academic Press, San Diego, CA.

www.manaraa.com

35

MIZUGUCHI, M., BUCHANAN, J., AND CALVERT, T. 2001. Data driven motion transitions

for interactive games. In Eurographics 2001 Short Presentations.

MOLINA-TANCO, L., AND HILTON, A. 2000. Realistic synthesis of novel human

movements from a database of motion capture examples. In Proceedings of the

Workshop on Human Motion, 137–142.

PARK, S., SHIN, H., AND SHIN, S. 2002. On-line locomotion generation based on motion

blending. In ACM Symposium on Computer Animation 2002.

PARK, S., SHIN, H., KIM, T., AND SHIN, S. 2002. On-line motion blending for real-time

locomotion generation. Computer Animation and Virtual Worlds, 15(3), 125–138.

PERLIN, K., 1995. Real time responsive animation with personality. IEEE Transactions

on Visualization and Computer Graphics, 1(1), 5–15.

PULLEN, K., AND BREGLER, C. 2002. Motion capture assisted animation: Texturing and

synthesis. In Proceedings of ACM SIGGRAPH 2002, 501–508.

ROSE, C., COHEN, M., AND BODENHEIMER, B. 1998. Verbs and adverbs:

multidimensional motion interpolation. IEEE Computer Graphics and Application 18, 5,

32–40.

www.manaraa.com

36

ROSE, C., GUENTER, B., BODENHEIMER, B., AND COHEN, M. F. 1996. Efficient generation

of motion transitions using spacetime constraints. In Proceedings of SIGGRAPH 96,

Computer Graphics Proceedings, Annual Conference Series, 147–154.

WANG, J. AND BODENHEIMER, B. 2003. An evaluation of a cost metric for selecting

transitions between motion segments. In Proceedings of ACM SIGGRAPH/Eurographics

Symposium on Computer Animation 2003.

WITKIN, A., AND POPOVIĆ, Z. 1995. Motion Warping. In Proceedings of ACM

SIGGRAPH 95, Annual Conference Series, 105–108.

	Real-Time Motion Transition by Example
	BYU ScholarsArchive Citation

	Title Page
	Copyright
	Graduate Committee Approval
	Abstract
	Table of Contents
	List of Figures
	Introduction
	Background
	Statement of the Problem
	Thesis Statement

	Motion Transitioning Methods
	Current Methods
	Approach Presented in this Thesis

	Real-Time Motion Transition by Example
	Abstract
	Introduction
	Related Work
	Real-Time Motion Transition by Example
	Finding Transition Points
	Dynamic Timewarping
	Aligning Motions
	Searching for an Example
	Motion Modification

	Experiments and Results
	Discussion and Further Work

	Summary and Conclusions

